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Topological Invariant in Riemann± Cartan Manifold
and Space-Time Defects
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In a Riemann±Cartan manifold a topological invariant is constructed in terms of
the torsion tensor. Using the f -mapping method and the complete decomposition
of the gauge potential, the topological invariant is extricated from a strong
restrictive condition and is quantized in units of an elementary length. This
topological invariant is linked to the first Chern class and its inner structure is
labeled by a set of winding numbers. In the early universe, by extending to a
gauge parallel basis in internal space and four analogous topological invariants,
the space-time defects are formulated in an invariant form and are quantized
naturally in units of the Planck length.

1. INTRODUCTION

In recent years, a great deal of work on spin and torsion has been done
by many physicists [1±4]. Though it has been common to include intrinsic

spin with gravitation [5±7] and to relate spin to the torsion tensor [8±10],

the quantization of the gravitational field and the mechanism of generation

of torsion in physics and geometry [11] are not very clear. In recent papers,

Ross [12] and De Sabbata [13] investigated these problems from the viewpoint
of space-time defects which are described by the integral

l l 5 R T l
m n dx m Ù dx n , T l

m n 5 G l
[ m n ] (1)

where T l
m n is the nonzero torsion tensor in Riemann±Cartan manifold and

G l
m n an asymmetric affine connection. In a discussion of the importance of
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spin and torsion in the early universe De Sabbata [13] assumed that the

integral l l is quantized in units of the Planck length Lp ( 5 ! " G/c 3), i.e.,

l l 5 R T l
m n dx m Ù dx n 5 nLp (2)

from which the author defined time at the quantum geometric level through

the fourth component as

t 5
1

c R TdA 5 nTp , Tp 5 Lp /c (3)

where n is an integer and c the velocity of light. Although the integral

(1) and the hypothesis (2) are analogous to the geometrical description of

dislocations (defects) in crystals and the well-known Bohr±Sommerfeld rela-

tion r pdq 5 n " , they violate the general coordinate invariance, and l l is not
even a vector at all. Under the general coordinate transformation x ® x8 with

the inverse x8 ® x, G l
m n , T l

m n , and l l obey

G l 8
m 8 n 8 5

- x l 8

- x l
- x m

- x m 8

- x n

- x n 8 G l
m n 1

- x l 8

- x l
- 2x l

- x m 8 - x n 8 , T l 8
m 8 n 8 5

- x l 8

- x l
- x m

- x m 8

- x n

- x n 8 T l
m n

l l 8 5 R T l 8
m 8 n 8 dx m 8 Ù dx n 8 5 R - x l 8

- x l T l
m n dx m Ù dx n Þ

- x l 8

- x l l l

So, l l is not observable. In ref. 14 we reconstructed the integral (1) in an

invariant form and quantized it at the topological level by means of the

vierbein theory and a topological invariant, which had been successfully used

in the gauge field theory of dislocation and disclination continuum [15, 16]

and the geometrization of Planck’ s constant [17]. In this paper, we will study
the origin of the topological invariant in analogy with the theory of magnetic

monopoles and extend the invariant to a more general case in terms of the

complete decomposition of U(1) and SO(2) gauge potentials. In units of an

elementary length, the topological invariant is quantized rigorously and its

inner structure is also studied naturally through a set of topological quantum

numbers. In the early universe, the introduction of the Planck length Lp to
the space-time defects has a profound significance in general relativity and

quantum theory, which may be important in the early universe because of

spontaneous symmetry breaking [17].

2. A TOPOLOGICAL INVARIANT IN RIEMANN± CARTAN
MANIFOLD

In vierbein theory, the torsion tensor can be expressed by

T A
m n 5 D m e A

n 2 D n e
A
m (4)
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where e A
m ( m , A 5 1, 2, 3, 4) is the vierbein field and

D m 5 - m 2 v m (x), v m 5 1±2 v AB
m IAB

is the gauge covariant derivative, in which v AB
m stands for the spin connection

and IAB the generator of the Lorentz group. Since the indices m and A belong

to different spaces, the vierbein e A
m obeys two kinds of transformations: one

is the general coordinate transformation x m ® x m 8 with the inverse x m 8 ®
x m , under which

e A
m 8 5 x m

m 8e
A
m , x m

m 8 5
- x m

- x m 8

The other is the local Lorentz transformation LA
B(x),

e8A
m 5 LA

B eB
m , LC

A(x)LC
B(x) 5 d AB

which is an orthogonal gauge transformation. In order to construct a topologi-

cal invariant in Riemann±Cartan manifold U4, as in ref. 15, we can define a
gauge parallel vector in internal space, whose existence is closely related to

the geodesic g (s),

du l

ds
1 G l

m n u
m u n 5 0, u m 5

dx m

ds
(5)

which can be further written in the covariant derivative notation [18]

¹ m u l 5 - m u l 1 G l
m n u

n 5 0

where ds is the element of length of g (s). Using v AB
m 5 ( ¹ m eA

n )e n B, we find

that the above covariant notation multiplied by e B
l gives

D m uA 5 0, uA 5 e A
l u l

which means uA(x) is a gauge parallel vector along the geodesic g (s). Though

the vector u l is defined only at points of g (s), it can be extended to a vector

field on a neighborhood of any point of g (s), which leads to uA(x) also a

gauge parallel vector field on this neighborhood [19, 20]. The projection of

the torsion tensor (4) along uA(x) is [15]

T m n 5 T A
m n uA 5 - m A n 2 - n A m (6)

where A m 5 eA
m uA is the U(1) gauge potential. This shows that T m n can be

expressed in terms of A m just like the curvature on U(1) principal bundle
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with base manifold U4, i.e., the U(1) gauge field strength, which is invariant

for the U(1)-like gauge transformation

A8m (x) 5 A m (x) 1 - m L (x) (7)

where L (x) is an arbitrary function. In analogy with the theory of magnetic

monopoles, one has a current j m defined by

j m : 5 ¹ n T * m n 5
1

! 2 g
- n ( ! 2 gT * m n ) (8)

where

T * m n 5
1

2

e m n l r

! 2 g
T l r (9)

is the covariant dual tensor of T m n . It is obvious that the current j m is identi-

cally conserved,

¹ m j m 5
1

! 2 g
- m ( ! 2 gj m ) 5 0

The conserved quantity Q is given by

Q 5 # s

j m ! 2 gd s m

where s is the spacelike Cauchy surface [21, 22]. Making use of (8), (9),

and the Gauss theorem, we can change the quantity Q into

Q 5 R S

1

2
T m n dx m Ù dx n (10)

where ( is a closed 2-surface with intrinsic coordinates u 5 (u1, u2) and

x m 5 x m (u1, u2). The integral in (10) is quite different from that of De Sabbata
in (1). Under the general coordinate and local Lorentz transformations, one

can prove

Q8 5 R S

1

2
T 8m 8 n 8 dx m 8 Ù dx n 8 5 R S

1

2
T m n dx m Ù dx n 5 Q

by using

u l 8 5
- x l 8

- x l u l , u8A 5 LA
B uB, D8m 8e8A

n 8 5
- x m

- x m 8

- x n

- x n 8 LA
B D m eB

n

T 8A
m 8 n 8 5

- x m

- x m 8

- x n

- x n 8 LA
B TB

m n , T8m 8 n 8 5
- x m

- x m 8

- x n

- x n 8 T m n
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That is to say, Q has the general coordinate and local Lorentz invariances.

So, Q is independent of the choice of coordinate system. In fact, the integral

Q in (10) is associated with the first Chern class, which means the quantity
Q is a topological invariant [14]. From (6) and (10), the meaning of this

topological invariant is the total projection of the torsion tensor T A
m n on the

closed surface ( . Similar to magnetic monopoles, Q can be called the total

torsion charge of the Riemann±Cartan manifold, which is considered to be

the source of spin of a physical system [13]. In dislocation continuum theory,

it is well known that T m n represents the dislocation density and Q corresponds
to the total projection of the Burgers vector on a surface. In our previous

work, this topological invariant has been successfully used to link the topology

of dislocations and disclinations to their geometrical description in the gauge

field theory of continuum and to construct a new geometrization of Planck

constant " at the topological level. One can see easily that Q has the dimension

of length.

3. THE DECOMPOSITION OF U(1) AND SO(2) GAUGE
POTENTIALS

On ( a U(1) gauge transformation is equivalent to a two-dimensional

rotation and A m (x) corresponds to the SO(2) gauge connection v ab
m (x) [15,

16]. This relationship can be expressed as follows:

v ab
m (x) 5 2

2 p
L

A m e ab, a, b 5 1, 2 (11)

where L is a length-dimensional constant that is introduced to make both

sides of Eq. (11) have the same dimension. The corresponding SO(2) gauge

covariant derivative for a vector field on ( , na(x), with respect to v ab
m is

denoted by

D m na 5 - m na 2 v ab
m nb, a, b 5 1, 2 (12)

In the decomposition of SO(2) gauge potential [23], when na(x) is a unit

vector field

na(x)na(x) 5 1

v ab
m (x) can be expressed in terms of na(x) as

v ab
m 5 (nb - m na 2 na - m nb) 1 (naD m nb 2 nbD m na)

which gives the U(1) gauge potential decomposition

A m 5
L

2 p
e ab(n

a - m nb 2 naD m nb) 5
L

2 p
(kb - m nb 2 kbD m nb) (13)
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where

kb 5 e abn
a (14)

satisfying

kaka 5 1, kana 5 0

i.e., ka is also a unit vector normal to na. Then, for any given 2-dimensional
unit vector va(x) on ( with

vana 5 cos u , vaka 5 sin u , vava 5 1

it can be expanded by na(x) and ka(x) as

va 5 na cos u 1 ka sin u (15)

If va(x) is a gauge parallel unit vector, i.e.,

D m va 5 0

the SO(2) and U(1) gauge potentials can be rewritten in terms of va(x) as

v ab
m 5 - m vavb 2 - m vbva (16)

A m 5
L

2 p
e abv

a - m vb (17)

These two decompositions were used to discuss the topological problems in

our previous work (e.g., refs. 14, 16, 17, 24). Multiplying (16) by kanb and
using the expansion (15), we can derive an important formula

ka( - m na 2 v ab
m nb) 5 2 - m u

that is,

kaD m na 5 2 - m u

Substituting this formula and (14) into (13), we can further express A m (x) in

the form

A m 5
L

2 p
e abn

a - m nb 1
L

2 p
- m u (18)

in which the term (L/2 p ) - m u can be looked upon as the U(1)-like gauge

transformation by comparing this expression with (7). From (17) and (18)

we see that the U(1) gauge potential decomposition through a non-gauge

parallel unit vector differs from that of a gauge parallel unit vector only in

a U(1)-like gauge transformation, which has no contribution to the gauge
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field strength T m n . Therefore, the U(1) gauge potential decomposition can be

just taken as

A m 5
L

2 p
e abn

a - m nb (19)

Here, one must notice that, though the decomposition (19) takes the pure

gauge form, it is not nonsense when na(x) has some singularities. In fact, it
is just the singularities of na(x) that contribute to the topological invariant Q
in Riemann±Cartan manifold. This point can be seen in the next section.

From (19) the gauge field strength T m n and the topological invariant Q are

changed into

T m n 5
L

2 p
e ab( - m na - n n

b 2 - n n
a - m nb) (20)

and

Q 5
L

2 p R S
e ab - m na - n n

bdx m Ù dx n (21)

respectively. The consequences (19)±(21) represent a great improvement
respect to our previous work (see, for example, refs. 14, 16, 17, 24) because

in (19)±(21) the unit vector na(x) is no longer required to be a gauge parallel.

4. THE INNER STRUCTURE OF THE TOPOLOGICAL
INVARIANT

In this section, we will investigate the inner struction of Q through its
topological quantization. Since na(x) is a unit vector field, it can, in general,

be further expressed as follows [24]:

na(x) 5
f a(x)

i f (x) i
, i f (x) i 5 ! f a(x) f a(x)

where f a(x) (a 5 1, 2) is a vector field on S , i.e.,

f a(x) 5 f a(x m (u1, u2)) 5 f a(u1, u2)

In dislocation continuum theory, na(x) stands for the order parameter describ-

ing the defects and its singularities are determined by dislocations. Obviously,

the zeros of f a(x) are just the singularities of na(x). Using the so-called f -
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mapping method, we can rewrite the topological invariant Q in (21) in the

compact d -function form [14]

Q 5 L R S
D 1 fu 2 d 2(

-
f )du1 du2 (22)

in terms of the intrinsic coordinates u1 and u2 of S , where D( f /u) is the usual

Jacobian determinant of
-

f with respect to u 5 (u1, u2). It is obvious that Q
does not vanish only when

-
f 5 0, i.e., the inner structure of Q is characterized

by the zeros of
-

f or the singularities of
-

n . Suppose that the vector field
-

f
possesses N zeros, according to the deduction of ref. 25 and the implicit

function theorem [26], the isolated solutions of
-

f (u1, u2) 5 0 can be expressed

in terms of u1 and u2 as

u1 5 a1
l , u2 5 a2

l , l 5 1, . . . , N

when the Jacobian determinant D( f /u) Þ 0, where the subscript l represents
the lth solution. Then, by means of another topological invariant, the winding

number of
-

f at al [27±30], the d -function d 2(
-

f ) can be expanded by [14]

d 2(
-

f ) 5 o
N

l 5 1

b l

) D( f /u)al )
d (u1 2 a1

l ) d (u2 2 a2
l )

where the positive integer b l is the absolute value of winding number and

is called the Hopf index [31] of map u ® f . Making use of this expansion

of d 2(
-

f ), which has the topological information b l and is regarded as a

generalization to the ordinary theory of d -function, we finally obtain the
topological invariant Q in (22) at the topological quantum level as

Q 5 o
N

l 5 1

b l h l L (23)

where h l 5 6 1 is called the Brouwer degree [32] of map u ® f .

From (23) we see that Q is quantized in units of a constant L, which
has the dimension of length, and, going a little further, can be viewed as the

elementary length in the Riemann±Cartan manifold. The topological quantum

numbers are determined by the Hopf indices and Brouwer degrees of the f -

mapping, i.e., the winding numbers of
-

n (or
-

f ) at its singularities (or zeros),

all of which are topological invariants and further characterize the inner
structure of Q. In space-time defects, na(x) is the order parameter of the

theory, and its singularities, i.e., the zeros of f a(x), are labeled by the space-

time dislocations. From (10) and (23), this topological invariant connects the

topology of the space-time defects to their geometry. In particular, Q is

constructed by means of the torsion tensor and then, in a torsion-free theory
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(i.e., the usual Riemannian manifold V4), it does not exist due to the vanishing

of torsion.

5. THE TOPOLOGICAL QUANTIZATION OF SPACE-TIME
DEFECTS

In the early universe or the Planck era, we suggest to use the U(1) gauge
field strength T m n and the topological invariant Q to measure the size of

dislocations in Riemann±Cartan manifold. We start by extending the gauge

parallel vector u A(x) in Section 2 to a gauge parallel basis in internal space.

Any integral curve of ordinary differential equation (5) is determined

by a point p0(x
1
0, . . . , x4

0) and a direction at p0 [33]. If, at the same point p0,
we give four linearly independent directions u l

(i)( p0) 5 (dx l /dsi)p0 with

g m n u
m
(i)( p0)u

n
( j )( p0) 5 d (ij ), i, j 5 1, 2, 3, 4

we obtain four geodesics and four corresponding linearly independent gauge

parallel vectors marked by the index (i) (i 5 1, 2, 3, 4),

D m uA
(i) 5 0

where

uA
(i) 5 eA

l u l
(i), uA

(i)u
A
( j ) 5 d (ij )

is called the gauge parallel basis in internal space. The projections of the

torsion tensor (4) on the basis and the corresponding topological invariants are

T (i)
m n 5 T A

m n u
A
(i) 5 - m A(i)

n 2 - n A(i)
m , A(i)

m 5 eA
m uA

(i)

and

l(i) 5 R S

1

2
T (i)

m n dx m Ù dx n (24)

respectively. In the present case, one can also show the invariant property

of l(i) with respect to the general coordinate and local Lorentz transforma-

tions, i.e.,

l8(i) 5 R S

1

2
T 8(i)

m 8 n 8dx m 8 Ù dx n 8 5 R S

1

2
T (i)

m n dx m Ù dx n 5 l(i)

by using

u l 8
(i) 5

- x l 8

- x l u l
(i), u8A

(i) 5 LA
BuB

(i)

T 8A
m 8 n 8 5

- x m

- x m 8

- x n

- x n 8 LA
BT B

m n , T 8(i)
m 8 n 8 5

- x m

- x m 8

- x n

- x n 8 T (i)
m n
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Since l(i) in (24) has the dimension of length, which leads us to call the

topological invariants also the space-time dislocations in Riemann±Cartan

manifold, the invariant time t is defined in analogy with (3) as

t 5
1

c R S

1

2
T (4)

m n dx m Ù dx n

From the discussions in Sections 3 and 4 we immediately get the topological

quantizations of length and time at the invariant level as

l(i) 5 o
N

l 5 1

b (i)
l h (i)

l L(i) (25)

t 5 o
N

l 5 1

b (4)
l h (4)

l T(4), T(4) 5
L(4)

c
(26)

that is, the space-time dislocations are quantized in units of four elementary
lengths L(i) (i 5 1, 2, 3, 4). In the early universe or the Planck era, we think

that the space-time is isotropic and the four elementary lengths L(i) can be

taken as the Planck length Lp, i.e.,

L(1) 5 L(2) 5 L(3) 5 L(4) 5 Lp (27)

The employment of the Planck length Lp is based on the two facts that (i)

the Planck length Lp is a fundamental constant with the dimension of length

and is constructed by three fundamental constants c, G, and " , which play

important roles in general relativity and quantum theory; and (ii) since torsion

is linked to spin and the spin is quantized, the Planck length Lp enters through
the minimal unit of spin, or action " . On the other hand, if we change

viewpoint, we see that the employment of (27) has a profound significance.

Since in Riemann±Cartan manifold, due to the existence of torsion, it is

shown in (25) and (26) that there must exist minimal units of length, which

are taken to be the Planck length Lp, then, with the velocity of light c and

the gravitational constant G, we can build up a new action-dimensional
constant " 5 L2

pc
3/G, which acts as the minimal unit of spin and leads to the

construction of quantum theory. In fact, from this viewpoint, the quantization

of spin can be derived directly from torsion, as will be shown in a subsequent

work. By substituting the formula (27) into (25) and (26), we get

l(i) 5 o
N

l 5 1

b (i)
l h (i)

l Lp (28)

t 5 o
N

l 5 1
b (4)

l h (4)
l Tp , Tp 5

Lp

c
(29)

So, with torsion, we have minimum units of length and, especially,
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time Þ 0! This in fact would give us the smallest definable unit of time as

Tp ’ 10 2 43 sec. In the limit of " Þ 0 (classical geometry of general relativity)

or c Þ ` (Newtonian case), we recover the unphysical Lp, Tp Þ 0 of classical
cosmology or physics.

Our suggestion (24) is invariant under general coordinate, local Lorentz,

and the U(1)-like gauge transformations, which are not possessed in (1), and

the quantizations of length and time are natural and rigorous results in our

discussion. But what was dealt with in ref. 13 can only be looked upon as

an assumption and the author cannot tell us how to determine the quantum
numbers. On the contrary, from (28) and (29), we see that the quantum

numbers are given by the Hopf indices and the Brouwer degrees, i.e., the

winding numbers, which are topological invariants.

6. CONCLUSION

In Riemann±Cartan manifold, a topological invariant (constructed by

means of the torsion tensor) is obtained in analogy with the theory of magnetic

monopoles. It is invariant under general coordinate transformations as well

as local Lorentz transformation and thus is independent of the coordinate
system. Furthermore, there is another U(1)-like gauge invariance in it. Using

the so-called f -mapping method and the complete decomposition of U(1)

and SO(2) gauge potentials, the topological invariant is formulated by a unit

vector field, which need not to be gauge parallel, and is quantized naturally

and rigorously in units of an elementary length. The quantum numbers are

determined by the Hopf indices and Brouwer degrees. This topological invari-
ant is closely related to the first Chern class and its inner structure is labeled

by the winding numbers. In the early universe or the Planck era, in order to

describe the space-time defects in an invariant form and quantize them natur-

ally, four corresponding invariants are introduced to measure the size of

space-time dislocations in Riemann±Cartan manifold by extending to a gauge
parallel basis in internal space. For the above-mentioned reasons, the Planck

length Lp and Tp ’ 10 2 43 sec play the roles of elementary length and unit

time, respectively, which has a profound significance in general relativity

and quantum theory and will be detailed elsewhere.
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